MANONMANIAM SUNDARANAR UNIVERSITY TIRUNELVELI – 627 012 <u>Common Cource Structure for B.Sc., GEOLOGY – 2020-2021</u> (For those who joined the course from the academic year 2020-2021 onwards)

Sem	Part I/II/III IV/ V	Sub. No	Subject Status	Subject Title	Cours e/Pape r	Hrs./ Week	L Hrs/ Week	T Hrs/ Week	P Hrs/ Week	C Credits
	Ι	17	Language	Tamil / Other Languages	1	6	6	0	0	4
	II	18	Language	English	1	6	6	0	0	4
	III	19	Core-Theory	Crystallography	1	4	4	0	0	4
Ħ	Ш	20	Major Practical-III	Practical– Crystallography	1	2	0	0	2	2
ter	III	21	Allied-III	Physics	1	4	4	0	0	3
Semester III	ш	22	Allied Practical-III	Practical- Physics	1	2	0	0	2	2
Sei	Ш	23	Skill based – Core I	Stratigraphy and Indian Geology or Gemology	1	4	4	0	0	4
	IV	24	Non- Major Elective-I	Climatology or Fundamentals of Geology	1	2	2	0	0	2
	IV	25	Common	*Yoga	1	2	2	0	0	2
			Total		9	32	28		4	27
	*Yoga-P	reparatory	work for two ho	urs (Extra hour)						
	Ι	26	Language	Tamil / Other Languages	1	6	6	0	0	4
	II	27	Language	English	1	6	6	0	0	4
	III	28	Core-Theory	Mineralogy	1	4	4	0	0	4
	III	29	Major Practical-IV	Practical– Mineralogy	1	2	0	0	2	2
\mathbf{b}	III	30	Allied-IV	Physics	1	4	4	0	0	3
er I	III	31	Allied Practical-IV	Practical- Physics	1	2	0	0	2	2
Semester IV	ш	32	Skill based – Core II	Geostatistics and Computer Application in Geology Or Disaster Management	1	4	4	0	0	4
S	IV	33	Non- Elective-II Major	Basic Hydrology or Mineral Economics	1	2	2	0	0	2
	IV	34	Common	*Computers for Digital Era	1	2	2	0	0	2
	v	35	Extension Activity	Extension activity NCC, NSS, Y	RC, YWF	,PE				1
			Total		9	32	28	0	4	28
		* Compu	iters for Digital E	ra -Preparatory work for two hours (Extra hour	•)				
\triangleright	III	36	Core-Theory	Igneous Petrology	1	5	5	0	0	4
Semester V	III	37	Core-Theory	Sedimentary and Metamorphic Petrology	1	6	6	0	0	4
eme	III	38	Core-Theory	Structural Geology	1	5	5	0	0	4
Š	III	39	Elective-I	Marine Geology /	1	4	4	0	0	4
									1	

1				Environmental Geology		1				
				Environmental Geology						
	III	40	Major Practical-V	Igneous Petrology	1	2	0	0	2	2
	III	41	Major Practical-VI	Sedimentary and Metamorphic Petrology	1	4	0	0	4	2
	III	42	Major Practical- VII	Structural and Elective-I	1	2	0	0	2	2
	IV	43	Skill based Common	Personality Development	1	2	2	0	0	2
			Total		8	30	22		8	24
	III	44	Core-Theory	Economic Geology	1	6	6	0	0	4
	III	45	Core-Theory	Hydrogeology	1	6	6	0	0	4
er VI	ш	46	Core-Theory	Applied Geology – I (Geophysics, Geochemistry, Engineering Geology, Mining Geology, Ore dressing)	1	6	6	0	0	4
	ш	47	Elective-II	Geology of Tamil Nadu/ or Applied Geology – II (Natural Hazards, Remote Sensing and Geographic Information System)/ or Medical Geology	1	4	4	0	0	4
Semester VI	III	48	Major Practical- VIII	Economic Geology and Hydrogeology	1	4	0	0	4	2
•1	III	49	Major Practical-IX	Applied Geology – I and Elective- II	1	2	0	0	2	2
	ш	50	Major Practical-X	Geological mapping (in Second year) – One week - Geological tour (more than two weeks in third year) Specimen collection during Geological tour, Periodical short field trips/ Viva Voce on Geological mapping, Geological tour and Reports Submission	1	2	0	0	2	2
			Total		8	30	22		8	22
	Total No	o. of Cours	ses		50					
	Total No	o. of Hours	8			184				
	Total No	. of Lectu	res				152			
	Total No	o. of Pract	ical's						32	
	Total No). of Credi	ts							151
*L- Lec	ture *	*T- Tuto	rial *P-P	Practical *C- Credit						

*L- Lecture *T- Tutorial *P- Practical *C- Credit

III SEMESTER

CRYSTALLOGRAPHY

Т Р С L 4 4 0 0

Objectives:

To know about the nature, forms, habit, symmetry elements, measurement of interfacial angles and twins in crystals. The classification of crystals into system and classes **Prerequisites:**

- Any person with a good grasp of the basic science or equivalent should be able to undertake the subject.
- **Outcome:**
 - Student will be prepared to address the geological resources for economic resources evaluation and exploitation programme.

UNIT-I Crystal Morphology

Definition for crystal – Morphological characters of crystals – Faces – Forms – Edge, Solid angle – Interfacial angle – Uses of Contact Goniameter.

UNIT-II Laws and forms of Crystals

Law of constancy of the Interfacial angles, Symmetry elements, crystallographic axes - Miller indices - Law of rational indices. Definition of Holohedral, Hemimorphic, Enantiomorphic and Hemihedral.

UNIT-III Systems of Cubic, Tetragonal and Hexagonal

Cubic system: Normal class, Pyritohedral class with special reference to well developed crystals. Galena, Spinel, Garnet, Fluorite, Diamond, Pyrite. Tetragonal system -Normal class with special reference to the crystals Zircon, Rutile, Cassiterite, Vesuvianite, Apophyllite. Hexagonal systems - Normal class, Hemimorphic class, Rhombohedral class with special reference to its type crystals Beryl, Zincite, Calcite, Corundum.

UNIT-IV Systems of Orthorhombic, Monoclinic and Triclinic **15 Hours**

Orthorhombic system - Normal class, Hemimorphic class, and Sphenoidal class with special reference to the crystal Barite, Staurolite, Sulphur, Topaz, Calamine, and Epsomite. Monoclinic system – Normal class with special reference to Gypsum, Epidote, Orthoclase. Triclinic system – Normal class with special reference to its crystals Axinite and Albite.

UNIT-V Twin crystals

Twin crystals - definition - Evidence of twins - Twin plane, Twin axis and Composition plane. Laws of Twinning - Classification of Twins - Contact and Penetration Twins - Simple Twin - Repeated Twin - Polysynthetic Twin. Twinning in Feldspar -Baveno, Carlsbad, Manebach, Pericline, Albite and Cross - Hatched Twins.

Total Hours: 60Hours

10 Hours

15 Hours

12 Hours

8 Hours

Text Book:-

- 1. F.C. Phillips. 1946. An Introduction to crystallography -.
- Dana, E.S.1935. A Text Book of Mineralogy-, John Wiley & Sons,
 Buerger, M.J. 1956. Elements of Crystallography, John Wiley and sons.

Refernces:-

- 4. 5. Ernest, E.Walhstrom, 1960, Optional Crystallography -, John Wiley & Sons,
- Mitra.S. 1994. Fundamentals of Optical, Spectroscopic and X-ray Mineralogy, at S.R.Technico Book House, Ashok Raj Path, Patna.

2020-21/MSU/51th SCAA/Affili. Coll./UG./B.Sc.(Geo)/Sem.-III/Part-IV/Skilled based Core-1/Ppr./-

III SEMESTER SKILL –BASED CORE- STRATIGRAPHY AND INDIAN GEOLOGY

Objectives:

To learn about the geological time scale, principles of stratigraphy and the description of strata and their relationship to tectonics, climate, fossils along with their distribution in different parts of India from Precambrian to recent and geological boundary problems and applications of stratigraphy.

Prerequisites:

• Any person with a good grasp of the basic science or equivalent should be able to undertake the subject.

Outcome:

• Students will develop the knowledge on sedimentary basin history and environment to review it's potentially for resource evaluation.

UNIT-I Principles of Stratigraphy

Principles of Stratigraphy: Laws of Stratigraphy, Correlation, Geological time scale,

Facies and facies change, Hiatus in records, Physiographic divisions of India.

UNIT – II Archaean and Proterozoic Stratigraphy

Archaeans of Peninsular India, Proterozoic-Cuddapah system and Vindhyan system of

rocks, their general characteristics and economic mineral deposits.

UNIT – III Palaeozoic and Gondwana Stratigraphy

Palaeozoic formations of Salt Range, Spiti and Kashmir. Age of Saline series. Umaria

marine beds. Gondwana formations of Tamilnadu and India with special reference to its flora.

UNIT – IV Mesozoic Stratigraphy

General characteristics and correlation with other parts of India of Triassic rocks of Spiti, Jurassic rocks of Kutch and Cretaceous rocks of Trichinopally. Deccan traps and its age.

UNIT – V Tertiary and Quaternary Stratigraphy

Tertiary rocks of Assam and its economic deposits, Rise of Himalayas, Siwalik system with its fauna, Karewa formations, coastal Cenozoic formations of Peninsula, Cuddalore Sand stone. Warkala beds,

12hours

12hours

15hours

L T P C 4 0 0 4

10hours

11hours

Text Book:-

- 1. Krishnan M.S., 1968. Geology of India and Burma, Higginbothams,.
- 2. Wadia D.N. 1953. Geology of India, Macmillian and Co.
- 3. Ravindra Kumar. 1985. Fundamentals of Historical Geology and Stratigraphy of India.

References:-

- 4. Dunbar, C.O. & Rogers, J. 1961. Principles of Stratigraphy, Wiley.
- 5. Eicher, L.D. 1968. Geologic time,. Prentice Hall.
- 6. Gignoux, M. 1960. Stratigraphic Geology, Freeman
- 7. Pasco E.S. 1973. A manual of the Geology of India and Burma.
- 8. Stokes W.L. 1965. Essentials of Earth History.
- 9. Weller, J.M 1960. Stratigraphic principles and practice, Harper and Row.

Total Hours: 60Hours

2020-21/MSU/51th SCAA/Affili. Coll./UG./B.Sc.(Geo)/Sem.-III/Part-IV/Skilled based Core-1/Ppr./-**III SEMESTER** SKILL BASED CORE- GEMMOLOGY

UNIT-I Crystal Systems

The nature of crystals - crystal systems - Introduction to Gems and precious stones kinds of Gemstones.

UNIT – II Characteristics of Gemstones

Physical and Chemical properties of various Gemstones - Form, colour, density, cleavage, fracture, lustre, Hardness, Specific gravity, isotropism, Anisotropism, Birefringence, simple and double refraction, colour and dispersion .

UNIT – III Characteristics of Precious stones

Precious Diamond ,Chrysoberyl, Topaz Emerald stones _ ,Zircon, Ruby, Sapphire, Coral and pearl - semi precious stones - varieties of quartz, Garnets, Pyroxenes, Amphiboles, Epidotes- Feldspathoids.

UNIT – IV Identification of Gem

Gem Identification - Megascopic and Microscopic identification, Gemmological refractometer, Spectroscopy, Examination of Fluorescence – Cutting of Gemstones.

UNIT – V Gems and Health

Gems and Health, Gem Therapy, Origin and mode of occurrences of Gemstones, Gems and Global Tectonics.

Total Hours: 60Hours

Text Book:-

1. Kennie Lymen, 1984. Guide to Gems and precious stones, Simon and Schusterinc, Newyork, 604p.

2. E.S.Data, 1935, A Text Book of Minerlogy, John Wiley & sons.

3. Deer, W.A., Howie, R.A and Zussman, J.1966, An Introduction to the Rock forming Minerals, Longmans.

References:-

4. Berry Mason, L.G.1961 Minerology W.H.Freeman and Co.

10 Hours

15 Hours

Т

0

L

4

12 Hours

11 Hours

12 Hours

0

Р С

2020-21/MSU/51th SCAA/Affili. Coll./UG./B.Sc.(Geo)/Sem.-III/Part-IV/Non Major elective-1/Ppr./-

(Non - Major Elective) Offered by Geology to students of other Department

III SEMESTER CLIMATOLOGY			
L 2	Т 0	Р 0	C 2
UNIT-I Principles of climatology		5 H	ours
Atmosphere- Fundamental principles of climatology – Earth's radiate longitudinal and seasonal variation of insolation.	ion	bala	nce –
Unit – II Characteristics of weather elements Weather elements– Temperature, pressure, humidity, clouds, wind, rainfall – monsoon patterns.	sun	-	ours and
Unit – III Cyclones Cyclones – Definition, types and their effects and geographic distribution	n.	4 H	ours
Unit – IV Classification of Climates Classification of climates –Koppen's and Thornthwaite's scheme of c climate change.	lassi	-	lours ion –
Unit – V Global warming Global warming: Definition, greenhouse effect, greenhouse gases, Imp change, prevent to global warming	act (ours imate
Acid rain: Definition, causes, formation, affected area, effects and measures. Ozone depletion: Definition, effects and preventive measures	nd p	preve	entive
Total Hou	irs:	30 H	Iours
<u>Text Book:-</u>			••••
1. Spencer, E.W .2003. Earth science, McGraw Hill,518p			
2. Abbott, L.P. 2002. Natural Disasters, McGraw Hill 422p			
3. Beer, T. 1997. Environmental Oceanography, VRC Press, Florida, 36	7p.		
References:-			

4. Valdiya K.S. 1987. Environmental Geology, Indian context, Tata Mc-Graw Hill,NewDelhi,581p.

.

S

2020-21/MSU/51th SCAA/Affili. Coll./UG./B.Sc.(Geo)/Sem.-III/Part-IV/Non Major elective-1/Ppr./-

(Non - Major Elective) Offered by Geology to students of other Department

FUNDAMENTALS OF GEOLOGY III SEMESTER

UNIT-I Geology and its perspectives

Geology and its perspectives - Geology as a science and its relationship with other sciences – subdivisions of Geology.

UNIT -III Origin, Age and Interior of the Earth 5hours

A brief review of the various theories regarding the origin and age of the earth .Interior of the Earth – study of internal constitution of the earth with the help of seismic waves.

UNIT – III Solar system

Solar system - its size, shape, density and movements of the Earth .Atmosphere, Lithosphere and Hydrosphere.

UNIT – IV Exodynamic Process

Exodynamic Process – Weathering and its types and effect on geological formations – Brief outlines of the geological work of wind, rivers and underground water – Mechanism of erosion, transportation and deposition.

UNIT – V Dynamics of Earth

Geological work of lakes, Glaciers, Seas and Oceans - Brief outlines of earthquakes, its nature and origin – Volcanoes – Types and causes of volcanism.

Total Hours: 30 Hours Text Book:-

1. Homer, A., 1992, Principles of Physical Geology, chapman & Hall, London.

2. Radhakrishnan, V., 1987, General Geology, V.V.P publishers, Tuticorin.

3.Jacobs, J.A., Russel, R.D, & Wilson, J.T., 1974. Understanding the Earth Edition .,London

References:-

4. Wyllie, P.J., 1971, The Dynamic Earth, John Wiley &sons

5. Spencer, E.V, 1962, Basic Concepts of Physical Geology, oxford&IBH.

6hours

7hours

6hours

9

0 0 2

L 2

6hours

Т Р С

2020-21/MSU/51th SCAA/Affili. Coll./UG./B.Sc.(Geo)/Sem.-III/Part-III/Major Practical-III/Ppr.-/

III SEMESTER PRACTICAL-III- CRYSTALLOGRAPHY

	$\overline{0}$ $\overline{0}$ $\overline{2}$ $\overline{2}$
Identification and Des	cription of Following Crystals.
Cubic System	: Normal Class – Galena, Spinel, Garnet, Fluorite, Diamond.
	: Pyritohedral class – Pyrite.
Tetragonal System	: Normal Class – Zircon, Rutile, Cassiterite, Vesuvianite,
	Apophyllite.
Hexagonal System	: Normal Class – Beryl.
	: Hemimorphic Class – Zincite
	: Rhombohedral class – Calcite and Corundum.
Orthorhombic System	m : Normal class – Barite, Staurolite, Sulphur, Topaz.
	: Hemimorphic class – Calamine.
	: Sphenoidal class – Epsomite.
Monoclinic System	: Normal class – Gypsum, Epidote, Orthoclase.
Triclinic System	: Normal class – Axinite and Albite.

Total Hours: 30 Hours

L T P C

2020-21/MSU/51th SCAA/Affili. Coll./UG./B.Sc.(Geo)/Sem.-III/Part-IV/Common -III/Ppr./-

III SEMESTERCOMMON- YOGA

L T P C 2 0 0 2

Total Hours: 30 Hours

2020-21/MSU/51th SCAA/Affili. Coll./UG./B.Sc.(Geo)/Sem.-IV/Part-III/Core-6/Ppr./-

IV SEMESTER

MINERALOGY

L T P C 4 0 0 4

Objectives:

To learn about the physical and optical properties of rock forming minerals. It deals in detail about the structure, physical and chemical properties of Ortho, ring, sheet, and chain and framework silicates.

Prerequisites:

• Any person with a good grasp of the basic science or equivalent should be able to undertake the subject.

Outcome:

• Student will be prepared to address the geological resources for economic resources evaluation and exploitation programme.

UNIT-I PHYSICAL PROPERTIES OF MINERAL:

Mineral–Definition and Classification –Physical properties of minerals: Color, Luster, Transparency or diaphaneity, Crystal Habits, Cleavage, Fracture, Hardness, Specific gravity, Streak, tenacity, feel, taste, odour, electrical, magnetic and thermal Properties - chemistry of minerals: general principals of chemistry as applied to minerals: atom, ions, molecules, atomic number, mass number, valence, ionic radii – bonding in minerals –atomic substitution and solid solution - Isomorphism, polymorphism and pseudomorphism. A brief outline of silicate structure.

UNIT-II - ORTHO AND RING SILICATES:

Physical properties, chemical composition, Classification, diagnostic properties and mode of occurrence of Ortho and Ring silicates:Garnet group, Alumino silicates-Epidote group, Zircon, Staurolite, Beryl, Cordierite and Tourmaline.

10hours

12hours

UNIT-III -SHEET SILICATES AND CHAIN SILICATES:

Physical properties, chemical composition, Classification, diagnostic properties and mode of occurrence of Sheet silicates and Chain silicates: Mica group, Chlorite group and clay minerals. Pyroxene group, Amphibole group.

UNIT-IV-FRAME WORK SILICATES:

Physical properties, chemical composition, Classification, diagnostic properties and mode of occurrence of Frame work silicates: Quartz group, Feldspar group, Feldspathoid group and Zeolite group.

UNIT-V-Optical Mineralogy:

Nature of light - Ordinary light and Plane polarized light – Reflection and Refraction – Refractive Index – Critical angle – Total internal reflection – Single refraction. Polarising / Petrological microscope and its parts - Behaviour of light in its passage through petrological microscope – Optical properties of minerals: Colour, Form, Cleavage, Refractive Index, Relief, Alteration, inclusions, Zoning, Pleochroism, Pleochroic haloes, Twinkling, Isotropism and anisotropism, Extinction, Polarisation colors, Birefringence, Twinning - Optical accessories and their uses: Gypsum plate – Mica plate – Quartz wedge. Optical properties of Uniaxial and biaxial minerals.

<u>Text Book:-</u>

1. Dana, E.S.1935. A text book of mineralogy, John Wiley and Sons, New York.

2. Read,H.H. 1916. Rutleys elements of mineralogy, Thomas Murphy & co,. London.

3. Kerr, Paul. 1977. Optical mineralogy, McGraw hill, New York.

REFERENCES

4. Deer, Howie and Zussman . 1964. an introduction to rock-forming minerals

orient, Longman, London.

5. Naidu, P.R.J. 1967. Optical Mineralogy.

Total Hours: 60 Hours

10hours

15hours

13hours

IV SEMESTER SKILL –BASED CORE- GEOSTATISTICS AND COMPUTER APPLICATION IN GEOLOGY

L	Т	Р	С
4	0	0	4

Unit I Statistics of Sampling, population, Scores, data, Curves, and Testing 22hours

Definition of Statistics - Sampling and population. Measures of central tendency — mean, median, mode, standard deviation, skewness and kurtosis. Nominal, Ordinal, Interval and Ratio scales. Discontinuous and continuous data. Ungrouped and grouped scores. Graphical representation of data; bar charts, histograms, line graph, XY graph, frequency and cumulative frequency curves. Hypothesis testing, x^2 student's 't' and Snedecor's 'F' tests.

Unit II Statistics of Geological Data types, correlation, Scales of measurements 13hours

Geological Data types - Parametric Statistics and Nonparametric Statistics. Karl Pearson's correlation, Spearman's rank correlation - Probability and normal distribution - -Simple Linear Regression - Goodness of fit tests: Chi-square test. Scales of measurements:

Unit - III Data Analyses

Geological Data Analyses - Principal component analysis – Discriminant analysis - Time series analyses - map analysis – Cluster analysis – Factor analysis.

Unit IV 1 Capabilities of Computer

Computer capabilities – General structure of a computer – Hardware components. Input devices (keyboard and mouse) output devices (dot matrix printers and Inkjet Printers) and storage devices (Disk organization, Floppy Disks, Hard disks and Compact discs) Computer applications in geology – Structured programming, algorithm and flowchart.

Unit V Windows 2013 and Microsoft office 2013

Windows 2013:- Introduction – Graphical user interface objects:- windows, icons, menus, pointers. desktop features: - short cut, task Bar, start, time and status. MS – WORD 2000: Introduction – menu bar – tool bar – drawing tools bar – Document creation and formatting. MS – EXCEL 2013: Worksheet concept – menu Bar, tool Bar, building formulas. Data Analysis using MS – Excel 2013: Data file creation – calculation of summary statistics.

Total Hours: 60 Hours

10hours

5hours

10hours

Text Book:-

- Krishna, N. 2001. Computer Fundamentals and windows with Internet Technology, SCITECH, Tirunelveli.
- 2. Davies, J.C. 1973. Statistics and data analysis in Geology, Wiley.
- 3. Harbaugh, J.W. & Merriam, D.F.1965. Computer application in Stratigraphic analysis, Wiley.

References:-

- 4. Krumbein W.C. and Gray bill F.A. 1965. An introduction to statistical models in Geology, McGraw Hill.
- 5. Miller R.L. Kahn, J.S. 1962. Statistical analysis in the Geological Sciences, Wiley.

2020-21/MSU/51th SCAA/Affili. Coll./UG./B.Sc.(Geo)/Sem.-III/Part-IV/Skilled based Core-2/Ppr./-

IV SEMESTER SKILL – BASED CORE- DISASTER MANAGEMENT

UNIT I Disaster

Disaster: Meaning, Factors and significance, causes and effects of disaster, Disasters: A global view. Disaster profile of India – Regional and seasonal.

UNIT II Earthquakes

Earthquakes: General characteristics, Pre-Casers: Instrumental and noninstrumental vulnerability, impact and effects, Nature of damage, earthquakes prone areas in India.

UNIT III Floods

Floods: Causal phenomena and characters of floods, vulnerability. predictability, forecasting and warning, preparedness mitigation with special reference to flood plain zoning adverse effects of flood.

UNIT IV Cyclones

Cyclones: Characteristics, forecasting and warning systems, preparedness, such reduction measures, effects, cyclones prone areas in India.

UNIT V Land slide

Land slide and snow avalanches: Characteristics and causes of land slide and snow avalanche. Characteristics and causes, vulnerability, Risk reduction measures, preparedness, effects and impacts.

Total Hours: 60 Hours

Text Book:-

1. Aravind Kumar Anmal, 2006. Disaster Management – Recent Approaches

2. Ghorh. G.K Disaster Managemen. 2006. A.P.H Publishy Corporation.

3. Singh, 2006. Disaster Management . Rawat Publication.

REFERENCES:-

- 4. Narayan, B.2006. Disaster Management. A.P.H Publishy Corporation.
- 5. Nikij Kumar. 2006. Disaster Management . Alfa Publication, 2006.

6hours

Т L

> 0 0

Р С

4

5hours

8hours

7hours

4hours

2020-21/MSU/51th SCAA/Affili. Coll./UG./B.Sc.(Geo)/Sem.-III/Part-IV/Non Major elective-2/Ppr./-

(Non – Major Elective) Offered by Geology to students of other Department

IV SEMESTER BASIC HYDROLOGY
L T P C 2 0 0 2
UNIT-I Origin of Water 5hours
Origin of Water- Water resources - Categorization of water resources - Surface water
resources from Dams and Lakes.
Unit – II Hydrologic cycle 6hours Hydrologic cycle – Various components of hydrological cycle – Precipitation, Run-
off, Infiltration, Evaporation and transportation - Rain gauges and their distribution.
Unit – III Aquifers 8hours Groundwater occurrence and movement – Aquifers – Definition and types –
Hydrogeological Properties of rocks .Basic Principles of groundwater exploration.
Unit – IV process and its features of water 7hours Running water – source – weathering, erosion, transportation and deposition – process
and its features – Water Shed Management.
Unit - V Rainwater harvesting Rainwater harvesting - Definition, method and their importance.4hours
Tayt Rook
<u>Text Book:-</u>
1. Alley.W.M. 1993. Regional groundwater quality – VNR- New York.
2. Arul P. 2000 A text book of Ground water, 1st Edition, 105 – 122
3. Bouwer, H., 1978, Groundwater Hydrology, McGraw-Hill Book co., NY
REFERENCES:-
4. Davies, S.N., & Dewilest, R.J.M., 1966, Hydrogeology, John Wiley & Sons Inc., N
5. Fetter.C.W. 1990. Applied Hydrology. Merill Publishing.

- 6. Karanth.K.R. 1987. Groundwater assessments and management Tata Mc-graw Hall
- 7. H. M. Raghunath 2007 Ground Water, New Age International, 520p

Total Hours: 30 Hours

2020-21/MSU/51th SCAA/Affili. Coll./UG./B.Sc.(Geo)/Sem.-III/Part-IV/Non Major elective-2/Ppr./-(Non – Major Elective) Offered by Geology to students of other Department

MINERAL ECONOMICS

UNIT-I Concept of Mineral

IV SEMESTER

Mineral Economics and its concept - A brief outline of world's mineral resources.

Unit – II Mineral Policy and Regulation

National Mineral Policy and conservation of minerals - an overview of the mines and minerals (regulation and development) act.

Unit – III Grades of Ores

Tenor - grade and specification of ores - classification and gradation of coal -Gradation of important minerals and ores.

Unit – IV classification of minerals

Strategic - critical and essential minerals - classification of minerals from military point of view.

Unit –V Mineral Resources

Marine mineral resources - Laws of seabed, marine mineral resources - Mineral taxation.

Text Book:-

1. Evans, A.M, 1993, Ore Geology and industrial minerals, Blackwell.

2. Sinha, R.K., & Sharma, N.L., 1973, Mineral Economics, Oxford & IBH publishing co.

3. Krishnaswamy, S., 1972, India's Mineral Resources, Oxford & IBH publishing co.

Total Hours: 30 Hours

Т 2 0 0

L

Р С

5hours

4hours

6hours

7hours

8hours

2020-21/MSU/51th SCAA/Affili. Coll./UG./B.Sc.(Geo)/Sem.-IV/Part-IV/Common/Ppr./-

COMMON

COMPUTER FOR DIGITAL ERA IV SEMESTER

Objectives:

To present the basic tools for an understanding of the fundamental electronic devices.

Unit – I: Basic Electronic Instruments:

Analog and Digital- Functions of instruments- Electronic versus electrical instruments- Essentials of an electronic instrument- Basic meter movement- Measurement of current- Converting basic meter to D.C. Voltmeter- multimeter D.C. Voltmeter- Loading effect of a Voltmeter- Ohmmeter- Multimeter.

Unit – II: Junction Diodes:

Semiconducting Materials- Fabrication of p-n junctions- Grown- Alloyed- Diffused-Metal Semiconductor junctions- Schottky barriers- Heterojunctions- Junctions diode- Tunnel diode.

Unit – III: Transistor:

BJT fabrication- specifications for switching transistors- High frequency transistors-Junction FET- Metal- Semiconductor FET- GaAs MOSFET- High Electron Mobility Transistor- Metal- Insulator Semiconductor FET.

Unit – IV: Integrated Circuits:

Introduction- Integrated Circuit- Advantages- Drawbacks- Scale of Integration-Classification of ICs by structure- Comparision between Different ICs- Clasification of ICs by function- Linear Integrated Circuits- Digital Integrated Circuits- Fabrication of IC compounds- Complete Monolithic Integrated Circuits- Popular Applications- MOS Integrated Circuits.

Unit –V: Power and Display Devices:

p-n-p-n diode- Uni Junction Transistor, Silicon Controlled Rectifier, Diac, Triac, LED.

Text Book:-

- 1. B.G. Streetman, "Solid State Electronic Devices", Prentice Hall of India, New Delhi, 1991.
- 2. B.L. Theraja, "Basic Electronics Solid State", S. Chand & Company Ltd, New Delhi, Reprint 2008
- 3. Millman and Halkias, "Integrated Electronics", Tata McGraw Hill Co., New Delhi, 28th Reprint 2003.

References:-

4. A.P. Malvino & d.p.Leach, "Digital Principles and Applicatuions", McGraw Hill International Edition, 4th Edition 1986.

Total Hours: 30 Hours

6hours

8hours

Т

L 2 0 Р С

0 2

5hours

5hours

6hours

IV SEMESTER PRACTICAL-IV- MINERALOGY

L T P C 0 0 2 2

MEGASCOPIC MINERALOGY:

Megascopic identification and description of the following: Quartz, Rosy quartz, Amethyst, Chalcedony, Agate, Flint, Jasper, Chert, Opal, Orthoclase, Microcline, Albite, Oligoclase, Labradorite, Nepheline, Leucite, Sodalite, Enstatite, Bronzite, Hypersthene, Diopside, Augite, Spodumene, Acmite, Rhodonite, Wollastonite, Anthophillite, Tremolite, Actinolite, Hornblende, Glaucophane, Olivine, Serpentine, Muscovite, Biotite, Vermiculite, Chlorite, Epidote, Garnet, Olivine, Natrolite, Stilbite, Apophyllite, Talc, Steatite, Andalusite, Kyanite, Sillimanite, Staurolite, Cordierite, Apatite, Beryl, Topaz, Calcite, Dolomite, Tourmaline, Zircon, Fluorite.

Identification and description of the following silicate minerals. Quartz and its varieties, Feldspar group, Feldspathoids, Pyroxene group, Amphibole group, Epidote, Mica, Garnet, Aluminum Silicate group.

MICROSCOPIC MINERALOGY:

Microscopic identification and Description of the following:- Quartz, Orthoclase, Microcline, Albite, Oligoclase, Labradorite, Nepheline, Leucite, Enstatite, Hypersthene, Glaucophane, Biotite, Muscovite, Olivine, Epidote, Garnet, Apatite, Zircon, Sphene, Tourmaline, Calcite, Andalusite, Kyanite, Sillimanite, Staurolite, and Cordierite.

<u>Text Book:-</u>

- 1. Earth Materials- Introduction to Mineralogy and Petrology, Cornelis Klein and Anthony Philpotts, Cambridge University Press, 2013.
- 2. Understanding Earth (Sixth Edition), John Grotzinger and Thomas H. Jordan, 2010,W.H. Freeman and company, New York.
- 3. Dana, E.S.1935. A text book of mineralogy, John Wiley and Sons, New York

Total Hours: 30 Hours

V SEMESTER

IGNEOUS PETROLOGY

Objectives:

To understand the forms, structures and textures of the intrusive nature of the igneous rocks, Crystallization, classification and petrogenesis of igneous rocks. Prerequisites:

• Any person with a good grasp of the basic science or equivalent should be able to undertake the subject.

Outcome:

• Student will be able to understand the Igneous processes and evolution of earth resources and rock types.

Unit – I Scope, Textures and Structures

Nature and scope of petrology, Rock cycle, intrusive and extrusive forms of igneous

rocks - textures and structures of igneous rocks.

Unit – II classification of igneous rocks

Principles of classification of igneous rocks, outlines of the C.I.P.W., Tyrrell's tabular

classifications and Rosenbusch classification.

Unit – III Petrography elements

Megascopic and microscopic petrography of the Granite clan, Granodiorite clan,

Diorite clan, Syenite clan, the Gabbro clan and the Ultrabasic clan. Aplite, Pegmatite and Lamprophyres.

Unit – IV constitution of magmas and Systems

Composition and constitution of magmas, Cystallisation of unicomponent magma,

Binary magmas with simple eutectic (Diopside-Anorthite system) and with solid solution

(Albite – Anorthite system) and with incongruent melting (Leucite – Silica system).

Unit – V Petrogenesis, Provinces and Principles of Bowen's Reaction 13 hours

Bowen's Reaction principle and its bearing on igneous petrogenesis. Theories of differentiation, assimilation, petrographic provinces.

15 hours

12 hours

L T

5

0 0

P C

4

17 hours

18 hours

Text Book:-

- Tyrrell, G.W. 1963.Principles of petrology, Methunn & Co.,.
 Turner, F.J. and Verhoogen, J., 1960. Igneous and Metamorphic petrology, McGraw-Hill Book co.
- 3. Bowen, N.I., 1966. Evolution of Igneous Rocks, Dover publication,
- 4. Huang, Walter, T. 1962. Petrology, McGraw Hill book Co.

References:-

- 5. Hatch, F.H., Wells, A.K. and Wells, M.K. 1949. Petrology of Igneous Rocks. Thomas Murby & Co.
- 6. Hyndmann, Donald, W. 1972. Petrology of Igneous and Metamorphic rocks, McGraw – Book Co.
- 7. Albert Johannsen, 1962, Allied pacific private limited, Bombay.

Total Hours: 75 Hours

V SEMESTER SEDIMENTARY AND METAMORPHIC PETROLOGY

Objectives:	
ODIECLIVES:	

L T P C 6 0 0 4

20 hours

To become familiar with the petrographic nomenclature of sedimentary rocks. To learn about the occurrence, origin, classification and environments of sedimentarary and metamorphic rocks.

Prerequisites:

• Any person with a good grasp of the basic science or equivalent should be able to undertake the subject.

Outcome:

• Student will be prepared to address the sedimentary and metamorphic basins to look for economic resources evaluation and exploitation programme.

Unit – I Sedimentary - Weathering , Environments and Classification 22hours

Weathering – decomposition and disintegration of rocks – Erosion – Transportation – Deposition – A brief idea of diagenesis and lithification. Size and shape of sediments. Relative abundance, composition and textures of sedimentary rocks. Classification of sedimentary rocks into clastic, residual, chemical and organic.

Unit – II Processes of Rock and provenance studies

Descriptive study of the rocks formed by the residual, mechanical, chemical and organic processes. An outline of heavy mineral analysis and its utility in the provenance studies.

Unit – III Metamorphism, textures and structures 18hours

Definition and types of metamorphism – Factors of metamorphism – Zones, grades and facies of metamorphism – Stress and antistress minerals – Metamorphic textures and structures.

Unit – IV Effects and elements of rocks 15 hours Effects of Dynamic, Contact and Regional (Dynamothermal and burial) Metamorphism on the following rocks. Carbonates, pelites, psammites, ferruginous and acid, intermediate, basic and ultrabasic igneous rocks.

Unit – V Metamorphic differentiation and Metasomatism 15hours Metamorphic differentiation – Metasomatism – Anatexis – Palingenesis – Diaphthoresis – An outline of granitisation. A brief discussion on the origin of amphibolite, charnockite, migmatite and eclogite.

Reference:

<u>Text Book:-</u>

1. Tyrrell, G.W. 1963. Principles of Petrology, Methunn, Co.,.

2. Winkler H.G.F. 1974. Petrogenesis of Metamorphic rocks, Third Edn. Springer Verlag.

3. Turner F.J. 1968. Metamorphic Petrology, McGraw Hill.

4. Miyashiro, A. 1973. Metamorphism and metamorphic belts Allan and Unwin.

References:-

5.Hyndman, F.D. 1972. Petrology of Igneous & Metamorphic rocks McGraw Hill.
6.Blatt H. Middleton, G and Murray R. 1972. Origin of Sedimentary Rocks, Prentice Hall.
7.Folk F.L. 1968.Petrology of Sedimentary Rocks Hempill's University Station Texas,.
8.Krumbein W.C. and Pettijohn F.J. 1960. Manual of Sedimentary Petrology, Appleton Century Co.,.

9.Pettijohn F.J. Potter, P.E. Silver, R., 1972. Sand and Sand Stones, Springer Verlag. 10.Pettijohn F.J. 1957. Sedimentary Rocks, Harper & Row.

Total Hours: 90 Hours

V SEMESTER

STRUCTURAL GEOLOGY

Objective:

To learn about the fundamentals of structural geology, including the methods of mapping, mechanical properties and deformation structures in rocks.

Prerequisites:

Any person with a good grasp of the basic science or equivalent should be able to undertake the subject.

Outcome:

After completing this course, students can identify important structures and will • have better understanding on various structural signatures, and tectonic setups.

UNIT-I Topography representation and attitude of beds

Definition and scope of structural geology - topographic features - topographic map geological map - contour lines-stratum contours - outcrops and exposures. Attitude of beds strike and dip of the formation – trends of outcrops and v-rules. True and vertical thickness of the formations. Types of forces, stress and strain.

UNIT II Folds

10 Hours

Clinometer and Brunton compass and its parts, method of using the instruments. Folds - Definition, parts of fold and classification of folds - criteria of recognition of folds in the field and from map. Mechanics of folding.

UNIT III Structures due to erosional and depositional process 10 Hours

Joints: Definition, geometric and genetic classification of joints. Erosional structures: Inlier and Outlier, Klippe and Fenster, Synclinal hill and Anticlinal valley. Unconformities: kinds, geological significance and their recognition. Overlap (Offlap and Onlap).

UNIT IV Faults

Faults: definition, parts of fault, geometric and genetic classification of faults, effects of faulting on outcrops and mechanics of faulting – Horst and Graben. Recognition of faults in the field.

UNIT V Structures and preparation of geological report

Foliation: descriptive terminology, kinds, origin and relation to major structures. Lineation: descriptive terminology, kinds, origin and relation to major structures. Shear zones: ductile and brittle shear zones. Elementary knowledge in the methods of sampling and preparation of geological report.

10 Hours

L Т

5

0 0

Р С

4

15 Hours

15 Hours

Text Book:-

 Billings M. P 1974, Structural geology ,Prentice hall New Delhi.
 Ragan ,D.M. 1985. Structural Geology.
 Hobbs,B.E, Means, W.D 1976 & William ,P.F– an outline of structural geology, John Wiley, Newyork.

References:-

- De Sitter, L.U.1956 Structural geology ,McGraw Hill,New York
 Gosh, S.K.1993 Structural Geology fundamentals and modern developments.
- 6. Lahee -1917. Field Geology.

...........

2020-21/MSU/51th SCAA/Affili. Coll./UG./B.Sc.(Geo)/Sem.-V/Part-III/Major elective-1/Ppr./-

MARINE GEOLOGY **V SEMESTER**

Objectives:

To understand the waves, tides, currents and bottom of the sea. It deals in detail about the law of the sea, marine deposits, beach minerals and instruments applications in sea.

Prerequisites:

• Any person with a good grasp of the basic science or equivalent should be able to undertake the subject.

Outcome:

• Preparation of man power to address the ocean resources and environment.

Unit – I History of Marine Geology and sampling techniques

History of Marine Geology. Principles and application of Echo sounder, Side scan sonar, Position fixing at Sea. Bottom sediment samplers.

Unit – II Waves and Tides

Waves: Definition, Parts of waves, Types of waves, Classification of waves and wave interactions with the shore.

Tides: Definition, Classification and types.

Unit – III Ocean Currents

Tsunamis: Definition, causes, generation, propagation and effects. Ocean Currents: Definition and causes. Littoral processes.

Unit – IV Ocean Floor and Coastline classification 12hours Geomorphology of the ocean floor - Sea floor spreading - Coastline classification -

Beach materials.

Unit - V Marine deposits and Coastal zone regulation

Eustatic Sea level changes, Marine deposits, Laws of the sea and Coastal zone regulation.

22hours

15hours

8hours

18hours

L Т Р С 4 0 0 4

Text Book:-

- 1. Kuenen, Ph.H., Marine Geology. John Wiley and Sons, 1950
- King, C.A.M. Beaches and coasts, Edward Arnold, London 1959.
 King, C.A.M. Introduction to marine Geology and Geomorphology. Edward Arnold, London, 1975.
- 4. Manimaran, G. 2007. Indian Ocean Tsunami and Related events. Renuga publications. Tirunelveli.pp.72

References:-

- 5. Radhakrishnan, V. General Geology V.V.P. Publishers, Tuticorin, 1996.
- 6. Siddhartha, K. 2002. Oceanography: A Brief Introduction, Kisalaya Publications Pvt Ltd, 347p.
- Shepard, F.P. Geological Oceanography, Heinmann, London, 1978.
 The Ocean, A Scientific American book, W.H. Freeman and company, SanFrancisco, 1969.

.

2020-21/MSU/51th SCAA/Affili. Coll./UG./B.Sc.(Geo)/Sem.-V/Part-III/Major elective-2/Ppr./-

ENVIRONMENTAL GEOLOGY

Unit – I Geological Agents, Resources and Mineral Mining

Geological agents and their impact on environment, renewable and non-renewable earth resources, Environmental impact of mineral extraction and mining.

Unit – II Global Warming and Green House Effect

Carbon-di-oxide in atmosphere, limestone deposits in the geological sequences. Global Warming and Green House Effect.

Unit – III Degradation, contamination, and Urbanisation

Impact assessment of degradation and contamination of surface water and ground water quality due to industrialization and Urbanisation.

Unit – IV problems in Environment

Environmental problems related to natural disasters and their mitigation – earthquakes, Valcanoes, Tsunami, Floods, droughts and storms.

Unit -V Medical Geology

V SEMESTER

Medical Geology - Introduction to Geomedicines, Heavy metals and health hazards -

Mineral induced diseases: Minameta, Fluorosis, Silicosis, Itai-itai, Goitre and cretin, Keshan, Enviro Scar, Mesothelioma, Anaemia, Lung Cancer, Wilson's diseases. Mineral remedies to diseases including Gem Therapy. Drugs from ocean.

Text Book:-

- 1. Strahler and Strahler .1973. Environmental Geosciences.
- 2. Valdiya, K.S. 1987. Environmental Geology, Indian Context. Tata McGraw Hill publishing Co. New Delhi,
- 3. Davis, S.N. 1992. Physical environment.
- 4. Balasubramanian, A.1995. Ecology, Environment and pollution, Indira publishers, Mysore.

References:-

- 5. Cannon, H.L. and Hopps, H.C., 1972. Geochemical environment in relation to health and diseases, Newyork Academy of science.
- 6. Keller, E.A., 1985. Environmental Geology, CBS publishers, NewDelhi,.
- 7. Libes, S.M. 1992. An introduction to marine biogeochemistry John wiley & Sons, Newyork,.
- 8. Trace elements in Human Nutrition and Health, 1996. world Health Organisation,.

Total Hours: 60

10hours

P C

L T

4

0 0 4

5hours

10hours

18hours

17hours

V SEMESTER PRACTICAL-IGNEOUS PETROLOGY

L T P C 0 0 2 2

To develop skill and abilities in the identification of rocks with their texture, mineralogy and genesis both in hand specimen and thin sections.

- a. Megascopic identification of important igneous rocks.
- b. Microscopic identification of rock fabrics, mineral assemblages of igneous rocks.

2020-21/MSU/51th SCAA/Affili. Coll./UG./B.Sc.(Geo)/Sem.-V/Part-III/Major practical-6/Ppr./-V SEMESTER PRACTICAL-SEDIMENTARY AND METAMORPHIC PETROLOGY

L T P C 0 0 4 2

To develop skill and abilities in the identification of rocks with their texture, mineralogy and genesis both in hand specimen and thin sections.

a. Megascopic identification of important metamorphic and sedimentary rocks.

b. Microscopic identification of rock fabrics, mineral assemblages of metamorphic and sedimentary rocks.

2020-21/MSU/51th SCAA/Affili. Coll./UG./B.Sc.(Geo)/Sem.-V/Part-III/Major practical-7/Ppr./-

PRACTICAL

STRUCTURAL GEOLOGY AND ELECTIVE-1 V SEMESTER

STRUCTURAL GEOLOGY

С 0 0 2 2

L Т Р

Basic idea of topographic contours, Topographic sheets of various scales. Introduction to Geological maps: Lithological and Structural maps Structural contouring and 3-point problems of dip and strike Drawing profile sections and interpretation of geological maps of different complexities

MARINE GEOLOGY:

- ➢ Beach profile survey and sediment sample collection.
- Estimation of salinity of seawater by Mohr-Knudsen's method Determination of dissolved oxygen of seawater - Determination of pH of seawater - Determination of total alkalinity of seawater - Verification of Beer's Law.
- > Graphical representation and interpretation of bathymetry data set- Study of bathymetry maps - Study of seismic profiles.

VI SEMESTER

ECONOMIC GEOLOGY

Objectives :

L Т Р С 0 0 4 6

To learn about geology of the non metallic minerals and their industrial applications, distribution and mode of occurrences. To gain knowledge about the mines legislation of India, National mineral policy, and their role in National economy. **Prerequisites:**

Any person with a good grasp of the basic science or equivalent should be able to undertake the subject.

Outcome:

Preparing students for professional employment in mineral mining and beneficiation industries. To train in the concepts of mineral exploration methods and address the techniques in exploration of economical deposits.

Unit – I Ore minerals, Gangue minerals Metallogenic and Classification 15hours

Ore, Protore, Ore minerals, gangue minerals, Tenor of ores, Geologic thermometers, Metallogenic epochs and provinces - Lindgren's and Bateman's classification.

Unit – II Mineral Deposits and its processes

An outline of the processes of formation of mineral deposits. Magmatic, hydrothermal, mechanical concentration mineral deposits (Placers), Oxidation and supergene sulphide enrichment and residual concentration deposits. Contact metamorphism / metasomatism – structural control on ore localization.

Unit – III Mode of occurrence and Distribution of important ores 17hours

Mineralogical characters, Mode of occurrence and Distribution of important ores -Iron, Copper, Lead, Zinc, Manganese, Gold, chromium and Aluminium.

Unit – IV Precious and semi-precious minerals

Radioactive minerals, Precious and semi-precious minerals, Minerals required for refractory, cement. ceramic. paint and pigments, Insulators fertilizers. and

Unit -V Coal & Petroleum in India and Mineral wealth of Tamil Nadu 12hours

Classification, origin, occurrence and distribution of coal in India. Origin, occurrence and distribution of petroleum in India. Mineral wealth of Tamil Nadu.

13hours

18hours

Text Book:-

- 1. Bateman. A.M. 1961. Economic mineral deposits, John Wiley & Sons.
- 2. Krishnaswamy. S. 1972. India's Mineral Resources, Oxford and IBH Publishers, New Delhi.
- 3. Gokhale.K.V.K. and Rao. T.K. 1972. Oredeposits of India, Thomson press, New Delhi.

References:-

- 4. Umeshwar Prasad, 1996, Economic geology, CBS Publishers and distributors, New Delhi-110 002.
- 5. Edward R. and Atkinsan K. 1986. Ore deposit Geology, Chapmon and Hall, 1.
- 6. Deb. S. 1980. Industrial minerals and rocks of India. Allied publisher. Pvt.Ltd.

Total Hours: 75

2020-21/MSU/51th SCAA/Affili. Coll./UG./B.Sc.(Geo)/Sem.-VI/Part-III/Core-9/Ppr./-

VI SEMESTER

HYDROGEOLOGY

•	This course is an introduction to the hydrological process in the earth system,
	estimation of aquifer parameters and potential for groundwater development
	using geophysical approach and assessment of groundwater quality through
	hydro geochemical techniques.

Outcome:

Objectives:

Student will gain knowledge on groundwater flow through earth system and skill to interpret potential for exploration of groundwater.

Unit – I Origin of groundwater

Hydrologic cycle, Origin of groundwater, Vertical distribution of ground water, Hydrological parameters, Types of aquifers, Springs.

Unit – II Groundwater movements

Ground water flow - Darcy's law, experimental verification, permeability- intrinsic

permeability - Hydraulic conductivity- Determination of aquifer constants.

Unit – III Occurrence of groundwater

Occurrence of groundwater in Igneous, Sedimentary and Metamorphic rocks. Occurrence in alluvial, glacial and coastal plains.

Unit – IV Exporation of groundwater

Exploration for ground water - Geological, remote sensing and geophysical methodsresistivity- Wenner method.-Schlumberger method, Seismic refraction method.

Unit – V Groundwater quality

Suspended and dissolved constituents- Chemical analysis - Concentration by weight,

Chemical equivalence, Total Dissolved Solid, Hardness; Graphical representation - Water

quality - Water sampling -- Suitability for domestic, industrial and agricultural purposes. Text Book:-

1. Ragunath. 1987 Ground water – Wiley Eastern,.

- 2. Todd. D.K. 1980. Ground water Hydrology, John Wiley,
- 3. Davis and Diewett. 1966. Hydrogeology, John Wiley.

References:-

4. Rao R.M. & Subrahmanyam A, 1999. Basic principles of hydrogeology, Tenali. 5. Arul, P.2000.A text book of Ground water. Dhanam Agency, Virudachalam.

Total Hours: 75

15 Hours

20 Hours

15 Hours

Р

0 4

0

С

L Т

6

15 Hours

10 Hours

VI SEMESTER **APPLIED GEOLOGY-I**

(GEOPHYSICS, GEOCHEMISTRY, ENGINEERING GEOLOGY, MINING GEOLOGY AND ORE DRESSING)

	LTPC
Objectives:	6 0 0 4

• To study the chemical properties of earth and application of chemistry in geology, to understand rock chemistry and evolution of various rock types through geochemical differentiation. Also to understand various surface guides for exploration of economical ores and minerals.

Prerequisites:

Any person with a good grasp of the basic science or equivalent should be able to undertake the subject.

Outcome:

_

• Better understanding on geochemistry of rocks and minerals and interpretation of geochemical path finders for economical minerals and ores.

Unit- I Fundamental and principles of Geophysical methods 13hours

Fundamental principles of Electrical Resistivity method, Gravity method, Magnetic method, Seismic Methods, Instrumentation and field procedures.

Unit-II Fundamental and principles of Geochemical elements 12hours

Definition, aims and scope of Geochemical structure and composition of the earth. Distribution of elements in the geosphere. Geochemical affinity. Geochemical classification of elements.

Unit-III Engineering Geology

The role of Geology in civil engineering. Properties of rocks – Strength and elastic properties. Properties of building stones concrete aggregates, rail and road material. Types of earth movements and their classification and preventive measures. Geological investigations pertaining to the foundations of dams, reservoirs and tunnels.

Unit-IV Geological Mining Methods

Prospecting sampling and evaluation of ore resources. Outline of the method of metal mining. Opencast and underground mining, Methods of coal mining.

Unit – V Ore Dressing/Beneficiation

Principles and scope of ore dressing, Physical and chemical properties as applied to ore dressing. A brief study of common crushers, grinders, and classifiers, Concentration of ore minerals by magneto - electrostatic and floatation processes.

15hours

15hours

20hours

Text Book:-

- **1.** Dobrin M.B., and Savit C.H.,1988. Introduction to Geophysical Prospecting (4th ed.,) McGraw Hill, New York.
- 2. Parasnis D. S .1997, Principles of applied geophysics, Chapman & Hall, 2-6 Boundary Row, London SE1 8HN, UK.
- 3. Ramachandra Rao, M.B., Prasaranga, 1975. Outlines of Geophysical Prospecting -A manual for geologists by University of Mysore, Mysore.
- 4. Brain Mason, 1966. Principles of Geochemistry. Willey 1966.
- 5. Arogyasamay, R.N.P. Course in Mining Geology. Oxford & I.B.H.Publishing Co.

References:-

- 6. Kruskopt E.B. 1967. Introduction to Geochemistry. Mc. Graw Hill 1967
- 7. Rankama, K. and Sahama, 1950, Geochemistry, University of Chicago Press
- 8. Krynine and Judd. 1957. Principles of Engineering Geology and Geo-techniques. Mc. Graw Hill.
- 9. Sinha R.K., & Sharma, N.L, Mineral Economics, Oxford & I.B.H.Publishers.
- 10. Sathya Narayanswami, B.S., Engineering geology. Chaparral & co. Delhi,2000.

Total Hours: 75

VI SEMESTER GEOLOGY OF TAMILNADU

L T P C 4 0 0 4

UNIT-I Geomorphology and Physiography of Tamil Nadu 12 Hours

Geological Time scale of India. General Geological setting of Tamil Nadu. Geomorphology: Physiography - Western and Eastern Ghats of Tamil Nadu and their structural aspects.

Unit-II Structures, Tectonics and Shear zones of Tamilnadu 15 Hours

Structure and Tectonics of TamilNadu. Shear zones of Tamilnadu- Palghat – Cauvery, Moyar – Bhavani, Salem-Attur and Gangavalli- Achankovil shear Zones.

Unit-III Archean systems and Proterozoic formations of Tamilnadu 13 Hours

Archean systems – Sathiyamangalam Greenstone Belt – Penninsular gneiss, Charnockite, Khondalites. Proterozoic formations- Charnockite-Migmatite and Granite.

Unit-IV Formations of Tamilnadu

Gondwana formations – Sivaganga formations, Sriperamabalur beds, Terani formations, Creataceous of Trichinopoly marine formations.

Unit-V Mineral wealth of Tamilnadu

Tertiary formations – Cuddalore formations – Neyveli Lignite formation, Kariaikal formations, Panamparai Sandstone – Recent Sub-recent – fluvio-marine coastal deposits – Manavalakuruchi, Thoothukudi. Mineral wealth of Tamilnadu.

····

Text Book:-

 Subramanian. K.S. and Selvan, T.A. 2001. Geology of Tamilnadu and Pondicherry. Geological Society of India, Bangalore- 192 p.

- 2. Krishnan M.S. 1968. Geology of India and Burma, Higginbothams, 1968.
- 3. Wadia D.N. 1953. Geology of India, Macmillian and Co.

References:-

4. Kumar. 1985. Fundamentals of Historical Geology and Stratigraphy of India.

Total Hours: 60

36

10 Hours

10 Hours

- -----

2020-21/MSU/51th SCAA/Affili. Coll./UG./B.Sc.(Geo)/Sem.-VI/Part-III/Major elective-2/Ppr./-

VI SEMESTER APPLIED GEOLOGY - II

(NATURAL HAZARDS, REMOTE SENSING AND GIS)

Unit-I Types of natural hazards and their classification

Introduction to natural hazards – Types of natural hazards and their classification.

Unit-II Earthquakes

Earthquakes – Types of elastic waves – Kinds of earthquakes – Seismograms – Ritcher's and movement scales – Causes, prediction and prevention of earthquakes.

Unit-III Landslides

Landslides - Classification - Driving forces and causes - Mitigation of landslides.

Unit-IV Remote sensing and its applications in geological sciences 20 Hours

Introduction to remote sensing – Electromagnetic spectrum – Sensors – Aerial platforms – Resolution of satellite data – Visual interpretation of satellite images – Application of satellite remote sensing in geological sciences.

Unit-V geographic Information System (GIS)

Application of GIS in earth science, Basic principles of geographic information system – Basic geographic concepts – spatial awareness, spatial measurement, spatial location and reference, spatial patterns Map Basics: Nature of maps, map scale, map projections, Grid Systems for mapping. GIS data models: vector and raster data models.

Text Book:-

- Gary L. Prost 2001. Remote Sensing for geologists Guide to Image Interpretation. Grdon and Breach Science Publishers pp. 374.
- Michale N.DeMers, 2005. Fundamental of Geographic Information Systems. Wiley India (p) Ltd.pp.467.
- Kang-tsung chang. 2002. Introduction to Geographic Information Systems. McGraw-Hill companies, pp 348.

References:-

4. Ian Heywood, Sarah Cornelius and steve carver. 2003. An Introduction to Geographic Information Systems, Pearson, pp 295.

Total Hours: 75

12 Hours

20 Hours

10 Hours

0

P C

0 4

L T

5

13 Hours

2020-21/MSU/51th SCAA/Affili. Coll./UG./B.Sc.(Geo)/Sem.-VI/Part-III/Major practical-8/Ppr./-VI SEMESTER PRACTICAL- ECONOMIC GEOLOGY AND HYDROGEOLOGY

L	Т	Р	С
0	0	4	2

Economic geology:

Identification and description of the following economic minerals:

Magnetite, Ilmenite, Hematite, Pyrite, Pyrolusite, Psilomelane, Chromite, Wulframite, Chalcopyrite, Malachite, Galena, Magnesite, Bauxite, Stibnite, Cinnabar, Gypsum, Barite, Monazite, Rutile, Sillimanite, Kyanite, Corundum, Calcite, Dolomite, Beryl, Asbestos, Orpiment.

Hydrogeology:

Analysis of rainfall data and resistivity data.

2020-21/MSU/51th SCAA/Affili. Coll./UG./B.Sc.(Geo)/Sem.-VI/Part-III/Major practical-9/Ppr./-

VI SEMESTER PRACTICAL- APPLIED GEOLOGY-I AND ELECTIVE-II

	L	Т	Р	С
	0	0	2	2
Geophysics.				

Geophysics:

Elementary analysis of seismic reflection and refraction data.

Geochemistry:

Classification of ground water and rock types based on geochemical data.

Engineering Geology:

Calculation of compressive strength, Shearing strength and Tensile strength of rocks. Select a suitable site from geological and topographical maps for dam and tunnel construction.

Mining Geology:

Estimation of ore reserves.

Geology of Tamilnadu

Problems and maps related to Geology of Tamilnadu

2020-21/MSU/51th SCAA/Affili. Coll./UG./B.Sc.(Geo)/Sem.-VI/Part-III/Major practical-10/Ppr./-

VI SEMESTER PRACTICAL

VIVA VOCE ON PERIODICAL SHORT FIELD TRIPS, GEOLOGICAL MAPPING GEOLOGICAL TOUR AND REPORTS

			T	Р 2	C
		0	0	2	2
	Geological mapping (One week mapping camp)				
\triangleright	Geological tour more than two weeks days				
	Viva voce on Geological mapping and Geological tour				
	Reports submission				
\triangleright	Specimen collection and two days short field trips				

MODEL QUESTIONS

B.Sc. Degree Examination, November 2017 Geology main

General	Geology
---------	---------

Time: Three Hours			Maxim	Maximum: 75 marks			
Section - A							
Answer all questions. All questions carry equal marks.			10 x 1=10 Marks				
1. The largest planet in the solar system is							
a) Neptune	b) Earth	c) Jupiter	d) Venus				
2). The thickest portion of the continental crust lies							
a) Beneath the	highest mou	ntain ranges	b) Above the highes	t mountain ranges			
c) Beneath the lowest mountain ranges			d) All of the	above			
3. The boundary between crust and mantle is termed as							
a) Moho	b) Conrad	c) Gutenberg	d) Asthenosp	ohere			
4. Age of the earth is regarded as approximately million years							
a) 3,450	b) 4,890	c) 4,500	d) 5,600				
5. Pot holes are characteristic features							
a) youth stage b)mature stage c) old stage d) all of the above							
6. An examples of wind deposits is							
a) Morain and drumlin b) Loess and dunes c) Levees d) Kettle holes							
7. Coral reefs are							
a)inorganic deposits b) sub-organic deposits c) organic deposit d) all of above							
8. The Deccan Plateau is the result of							
a) Hygrometer	r b) Ai	nemometer	c) seismograph	d) seismogram			
9. The hot spring that discharge at periodical interval is known as							
a) Hot spring b) Geyser c) Artesian Spring d) None							
10. Volcanoes which are erupting at present are knows as							
a) Active volcano b) dormant volcano c) extinct volcano d) none							
			.,				

Section - B

Answer all questions. All questions carry equal marks 5 X 5=25 11. a. write note on minor plates. (or)

b. Moho discontinuity –Comment.

12. a. Half life period –Write notes.

(or)

- b. Briefly comment on Subduction zone.
- 13. a. Explain Origin of spring.

(or)

- b. Outlines various type of coral reefs.
- 14. a. Distinguish between seismograph and seismogram.

(or)

- b. Describe erosional features of wind.
- 15. a. Describe different types of volcanic products.

(or)

b. Give and note on – Ring of fire.

Section – C

Answer all questions. All questions carry equal marks $5 \ge 8 = 40$

- 16. a. Give an account of origin of solar system.
 - (or)

b. Give a brief account of composition of the Earths core and Asteroids.

17. a. Enumerate the important methods for determining age of the earth.

(or)

- b. Write short notes on (i) Characteristic features of continents (ii) Radioactivity
- 18. a. Define weathering. Explain in detail the various types of weathering.

(or)

b. Give a brief account of the following.

(i) Depositional feature of wind (ii) Meanders and Ox-bow lakes

19. a. What are glaciers? How are they classified?

(or)

- b. Write explanatory notes on the following
- (i) Origin of coral reef (ii) Wave characteristics.

20. a. Define a volcano. Explain briefly the different types and phases of volcanoes. (or)

- b. Write brief notes on the following:
- (i) Different scales of earthquakes.
- (ii) Effects of earthquakes.

B.Sc. Degree Examination, 2017 Onwards

Geology main

Paleontology

Time: Three Hours			Maximum: 75 marks			
Section - A						
Answer all questions. All o	questions carry	equal marks.	10 x 1=10 Marks			
1. The study of life the past geological ages						
a) Biology	b) Palynology	c) Palaeontology	d) None of these			
2. Flask shaped foraminifera	L					
a) Lagena	b) Texularia	c) Triliculina	d) Quinqueloculina			
3. The Coelenterate fossil sho	owing 'exsert' c	condition of septa				
a) Montivaltia	b) Calceola	c) Zaphrentis	d) Favosites			
4. The Brachyopods possess 'arm like Skeletons' called as						
a) Lopophore	b) Stalk	c) Spines	d) None of these			
5. The isodont type dentition is seen in the fossil						
a) Spondylus	b) Arca	c) Meretrix	d) Venus			
6. The margin of aperture in gastropod is called as						
a) Spire	b) Columella	c) Peristome	d) Callus			
7. The fossil Nautilus shows						
a) Globular form	b) Discodal	c) Fusi form	d) Trochi form			
8. Trilobita belongs to the phylum						
a) Mollusca	b) Arthopoda	c) Gastropoda	d) None of these			
9. The fossil Micraster has the shape of						
a) Heart	b) Platy	c) Rounded	d) None of these			
10. The middle Cambrian Trilobite index fossil is						
a) Paradoxide	b) Navadia	c) Olenus	d) Olenellus			
Section - B						
Answer all questions. All questions carry equal marks			5 X 5=25			
11. a. Explain various scope of palaeontology?.						
(or)						
b. Define fossil? And add a note on index fossils?						
12. a. Describe development of septa in coral reef?						
(or)						

b. Describe the morphological characters of Montivoltia.

13. a. Describe the brachial skeletons?

(or)

- b. Describe pedicle opening.
- 14. a. Describe the beleminite morphology.
 - (or)
 - b. Describe suture pattern of cephalopod.
- 15. a. What is facial suture and explain various conditions of facial suture?
 - (or)
 - b. Give and note on Cambrian Trilobite.

Section – CAnswer all questions. All questions carry equal marks $5 \ge 8 = 60$

16. a. Elucidate the various uses of fossils.

(or)

b. What is fossil? Explain various types of fossils.

17. a. Write essay on the morphology of foraminifera with neat sketches.

(or)

b. Describe the various canal system of sponges with neat sketches.

18. a. Describe the morphology of Brachiopod with neat sketches.

(or)

- b. Describe general morphology of Pelecypoda with neat sketches.
- 19. a. Describe the general morphology of Gastropod with neat sketches.

(or)

b. Describe classification of Cephalopods.

20. a. Describe the general morphology of Trilobite with neat sketches.

(or)

b. Distinguish regular and irregular echinods and a note on the classification of phylum echinodermata.